Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls.

نویسندگان

  • Zoë A Popper
  • Maria G Tuohy
چکیده

Niklas (2000) defined plants as “photosynthetic eukaryotes,” thereby including brown, red, and green macroalgae and microalgae. These groups share several features, including the presence of a complex, dynamic, and polysaccharide-rich cell wall. Cell walls in eukaryotes are thought to have evolved by lateral transfer from cell wall-producing organisms (Niklas, 2004). Green and red algae originate from a primary endosymbiotic event with a cyanobacterium, which is thought to have occurred over 1,500 million years ago (Palmer et al., 2004). Even though extant cyanobacteria have cell walls that are based on a peptidoglycanpolysaccharide-lipopolysaccharide matrix and thus differ markedly from the polysaccharide-rich cell walls of plants, there is preliminary evidence that they may contain some similar polysaccharides (Hoiczyk and Hansel, 2000), and genes already involved in polysaccharide synthesis or those subsequently coopted into wall biosynthesis may have been transferred during endosymbiosis. Independent secondary endosymbiotic events subsequently gave rise to the Euglenozoa (which lack cell walls) and brown algae (which have cell walls; Palmer et al., 2004). Investigations of the diversity of wall composition, structure, and biosynthesis that include algae, therefore, may lend new insights into wall evolution (Niklas, 2004). Algal cell wall research, in common with that of land plants, has focused on commercially important species and polysaccharides; thus, the most well-described algal wall components include the commercially and ecologically important laminarans, carrageenans, fucans, and alginates (Mabeau and Kloareg, 1997; Campo et al., 2009). However, there are over 35,600 species of seaweed, and their cell wall components exhibit enormous diversity (for review, see Painter, 1983; Kloareg and Quatrano, 1988; De Reviers, 2002). Even though distinct suites of polysaccharides are known to occur in different taxa such that algal cell wall profiles can be used as taxonomic markers (Parker, 1970; Domozych et al., 1980), some wall components have a wider distribution and are also found in other organisms, including land plants. Renewed interest in plant and algal cell wall composition (Popper and Fry, 2003, 2004; Niklas, 2004; Vissenberg et al., 2005; Van Sandt et al., 2007; Fry et al., 2008a, 2008b; Popper, 2008; Sørensen et al., 2008), perhaps driven by potential industrial applications (Pauly and Keegstra, 2008) and a desire to better understand cell wall functions (Niklas, 2004), has been facilitated by the development of several techniques capable of screening cell wall polymers. Increased information has added detail to the diversity known to exist in cell wall composition, generated as organisms adapted to specific niches (Sarkar et al., 2009). However, it is also becoming apparent that similarities, as well as differences, exist between plant and algal cell walls. Therefore, examination of the patterns of occurrence of wall components suggests that existing diversity is likely to be the result of a variety of different evolutionary scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cell Walls of Green Algae: A Journey through Evolution and Diversity

The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For examp...

متن کامل

Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques

Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms f...

متن کامل

The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex.

Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome ...

متن کامل

Chloroplast-mitochondria cross-talk in diatoms.

Diatoms are unicellular, mainly photosynthetic, eukaryotes living within elaborate silicified cell walls and believed to be responsible for around 40% of global primary productivity in the oceans. Their abundance in aquatic ecosystems is such that they have on different occasions been described as the insects, the weeds, or the cancer cells of the ocean. In contrast to higher plants and green a...

متن کامل

Green Nanoparticles Engineering on Root-knot Nematode Infecting Eggplant plants and Their Effect on Plant DNA Modification

Background: Root-knot nematodes are known to cause significant damage to eggplants. New approaches by green silver nanoparticles (GSN) are used to control plant-parasitic nematode to avoid chemical nematicide hazards.Objectives: Analyses of the incorporation of different concentrations of nanoparticles on two different algae (Ulva lactuca and Turbinaria turbinata) were carried out. Fureth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 153 2  شماره 

صفحات  -

تاریخ انتشار 2010